请登录

大数据分析综合能力提升

傅一航 华为系大数据专家

授课时长: 6

授课形式:数据分析基础 + 方法讲解 + 实际业务问题分析 + Excel实践操作 采用互动式教学,围绕业务问题,展开数据分析过程,全过程演练操作,让学员在分析、分享、讲授、总结、自我实践过程中获得能力提升。

授课对象: 销售部门、营业厅、呼叫中心、业务支撑、经营分析部、运营分析部等对业务数据分析有基本要求的相关人员。

课程 介绍 ACHIEVEMENT

本课程为基础课程,面向所有业务部门。

本课程的主要目的是,帮助学员了解大数据的本质,培养学员的数据意识和数据思维,掌握常用的统计分析方法和工具,以业务问题为导向,提升学员的数据分析综合能力。

一般情况下,在企业中有80%的数据分析工作(比如业务分析、经营分析等等),都可以使用简单的统计分析方法来解决,关键在于发现企业运营过程中的业务规律及业务问题,进而提出业务策略及建议,供企业领导进行决策。

课程 收益 INTRODUCE
1
了解数据分析的本质,理解数据决策的底层逻辑
2
学会搭建数据分析框架,熟悉常用的业务模型
3
熟悉数据分析标准过程,能够按步骤进行数据分析
4
掌握常用统计分析方法,熟练使用Excel高级数据分析工具
课程 大纲 LECTURER

第一部分: 数据核心理念数据思维篇

问题:什么是数据思维?大数据决策的底层逻辑以及决策依据是什么?

1、 数字化五大技术战略:ABCDI战略

Ø A:人工智能,目的是用机器模拟人类行为

Ø B:区块链,构建不可篡改的分布记账系统

Ø C:云计算,搭建按需分配的计算资源平台

Ø D:大数据,实现智能化的判断和决策机制

Ø I:物联网,实现万物互联通信的基础架构

2、 大数据的本质

Ø 数据,是事物发展和变化过程中留下的痕迹

Ø 大数据不在于量大,而在于全(多维性)

Ø 业务导向还是技术导向

3、 大数据决策的底层逻辑(即四大核心价值)

Ø 探索业务规律,按规律来管理决策

案例:客流规律与排班及最佳营销时机

案例:致命交通事故发生的时间规律

Ø 发现运营变化,定短板来运营决策

案例:考核周期导致的员工月初懈怠

案例:工序信号异常监测设备故障

Ø 理清要素关系,找影响因素来决策

案例:情绪对于股市涨跌的影响

案例:为何升职反而会增加离职风险?

Ø 预测未来趋势,通过预判进行决策

案例:惠普预测员工离职风险及挽留

案例:保险公司的车险预测与个性化保费定价

4、 大数据决策的三个关键环节

Ø 业务数据化:将业务问题转化为数据问题

Ø 数据信息化:提取数据中的业务规律信息

Ø 信息策略化:基于规律形成业务应对策略

案例:用数据来识别喜欢赚“差价”的营业员

第二部分: 数据分析过程流程步骤篇

1、 数据分析的六

2、 步骤1:明确目的,确定分析思路

Ø 确定分析目的:要解决什么样的业务问题

Ø 确定分析思路:分解业务问题,构建分析框架

3、 步骤2:收集数据,寻找分析素材

Ø 明确数据范围

Ø 确定收集来源

Ø 确定收集方法

4、 步骤3:整理数据,确保数据质量

Ø 数据质量评估

Ø 数据清洗、数据处理和变量处理

Ø 探索性分析

5、 步骤4:分析数据,寻找业务答案

Ø 选择合适的分析方法

Ø 构建合适的分析模型

Ø 选择合适的分析工具

6、 步骤5:呈现数,解读业务规律

Ø 选择恰当的图表

Ø 选择合适的可视化工具

Ø 提炼业务含义

7、 步骤6:撰写报告,形成业务策略

Ø 选择报告种类

Ø 完整的报告结构

演练:产品精准营销案例分析

Ø 如何搭建精准营销分析框架

Ø 精准营销分析的过程和步骤

第三部分: 数据分析方法统计方法

问题:数据分析方法的种类?分析方法的不同应用场景?

1、 业务分析的三个阶段

Ø 现状分析:通过企业运营指标来发现规律及短板

Ø 原因分析:查找数据相关性,探寻目标影响因素

Ø 预测分析:合理配置资源,预判业务未来的趋势

2、 常用的数据分析方法种类

Ø 描述性分析法(对比/分组/结构/趋势/交叉…)

Ø 相关性分析法(相关/方差/卡方…)

Ø 预测性分析法(回归/时序/决策树/神经网络…)

Ø 专题性分析法(聚类/关联/RFM模型/…)

3、 统计分析基础

Ø 统计分析两大关键要素(类别、指标)

Ø 统计分析的操作模式(类别à指标)

Ø 统计分析三个操作步骤(统计、画图、解读)

Ø 透视表的三个组成部分

4、 常用的描述性指标

Ø 集中程度:均值、中位数、众数

Ø 离散程度:极差、方差/标准差、IQR

Ø 分布形态:偏度、峰度

5、 基本分析方法及其适用场景

Ø 对比分析(查看数据差距,发现事物变化)

演练:寻找用户的地域分布特征

演练:分析产品受欢迎情况及贡献大小

演练:用数据来探索增量不增收困境的解决方案

Ø 分布分析(查看数据分布,探索业务层次)

演练:银行用户的消费水平和消费层次分析

演练:客户年龄分布/收入分布分析

案例:通信运营商的流量套餐划分合理性的评估

演练:呼叫中心接听电话效率分析(呼叫中心)

Ø 结构分析(查看指标构成,评估结构合理性)

案例:增值业务收入结构分析(通信)

案例:物流费用成本结构分析(物流)

案例:中移动用户群动态结构分析

演练:财务领域的结构瀑布图、财务收支的变化瀑布图

Ø 趋势分析(发现事物随时间的变化规律)

案例:破解零售店销售规律

案例:手机销量的淡旺季分析

案例:微信用户的活跃时间规律

演练:发现客流量的时间规律

Ø 交叉分析(从多个维度的数据指标分析)

演练:用户性别+地域分布分析

演练:不同客户的产品偏好分析

演练:不同学历用户的套餐偏好分析

演练:银行用户的违约影响因素分析

第四部分: 数据分析方法分析框架

问题:如何才能全面/系统地分析而不遗漏?如何分解和细化业务问题?

1、 业务分析思路和分析框架来源于业务模型

2、 常用的业务模型

Ø 外部环境分析:PEST

Ø 业务专题分析:5W2H

Ø 竞品/竞争分析:SWOT、波特五力

Ø 营销市场专题分析:4P/4C等

3、 用户行为分析5W2H分析思路和框架

Ø WHY:原因(用户需求、产品亮点、竞品优劣势)

Ø WHAT:产品(产品喜好、产品贡献、产品功能、产品结构)

Ø WHO:客户(基本特征、消费能力、产品偏好)

Ø WHEN:时间(淡旺季、活跃时间、重购周期)

Ø WHERE:区域/渠道(区域喜好、渠道偏好)

Ø HOW:支付/促销(支付方式、促销方式有效性评估等)

Ø HOW MUCH:价格(费用、成本、利润、收入结构、价格偏好等)

案例讨论:结合公司情况,搭建用户消费习惯的分析框架(5W2H)

 

结束:课程总结问题答疑

Copyright © 2022- 2022 上海宇谷信息科技集团有限公司 备案号: 沪ICP备2020038250号-2

021-60403586

( 工作日:9:30 - 18:30 )